skip to main content


Search for: All records

Creators/Authors contains: "Farrell, J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Strongly lineated terrain outside of Iceland's active plate boundary zones is created by faults and dikes aligned with the rift zones where they formed, similar to the spreading fabric defined by abyssal hills generated at mid‐ocean ridge spreading centers. As expected, rift‐parallel normal faults and fissures dominate in the active rift zones, but in older crust to the east and west, faults with strike‐slip and oblique‐slip displacements dominate. Some areas have widespread, small‐scale, strike‐slip, and oblique‐slip faults, while others have more widely spaced, larger, strike‐slip fault zones. In most cases, the strike‐slip and oblique‐slip faults strike subparallel to nearby older dikes and normal faults assumed to indicate the orientation of the rift zones where they formed. Strike‐slip displacements overprinting normal faults and along dike margins suggest reactivation of spreading‐related zones of weakness. More complicated fault geometries and kinematics occur near the oblique rifts and the major transform fault zones. The sense of movement on the strike‐slip and oblique‐slip faults is broadly systematic with respect to the active Northern and Eastern Rift Zones supporting the interpretation that they are the result of crustal block rotations on either side of rift zones that propagate to the north and south away from the center of the Iceland hot spot. Similar fault kinematics may occur along mid‐ocean ridges and other magmatic rifts where rift propagation occurs on a range of scales.

     
    more » « less
  2. Abstract The Phase-I trigger readout electronics upgrade of the ATLAS Liquid Argon calorimeters enhances thephysics reach of the experiment during the upcoming operation atincreasing Large Hadron Collider luminosities.The new system, installed during the second Large Hadron Collider Long Shutdown,increases the trigger readout granularity by up to a factor of tenas well as its precision and range.Consequently, the background rejection at trigger level is improvedthrough enhanced filtering algorithms utilizing the additional informationfor topological discrimination of electromagnetic and hadronic shower shapes.This paper presents the final designs of the new electronic elements,their custom electronic devices, the proceduresused to validate their proper functioning, and the performance achievedduring the commissioning of this system. 
    more » « less
  3. null (Ed.)